Surname	Centre Number	Candidate Number
First name(s)		0

GCSE

3430UB0-1

FRIDAY, 16 JUNE 2023 - MORNING

SCIENCE (Double Award) Unit 2 – CHEMISTRY 1 HIGHER TIER

1 hour 15 minutes

For Examiner's use only				
Question	Maximum Mark	Mark Awarded		
1.	8			
2.	7			
3.	4			
4.	6			
5.	8			
6.	9			
7.	9			
8.	9			
Total	60			

ADDITIONAL MATERIALS

In addition to this examination paper you will need a calculator and a ruler.

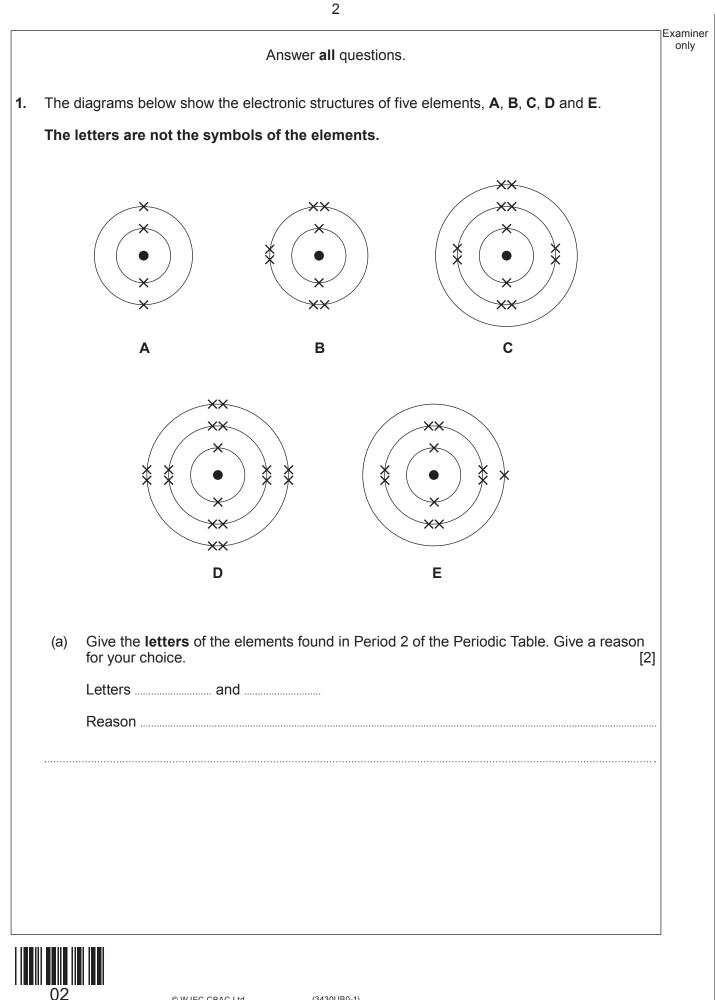
INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.

You may use a pencil for graphs and diagrams only.

Write your name, centre number and candidate number in the spaces at the top of this page. Answer **all** guestions.

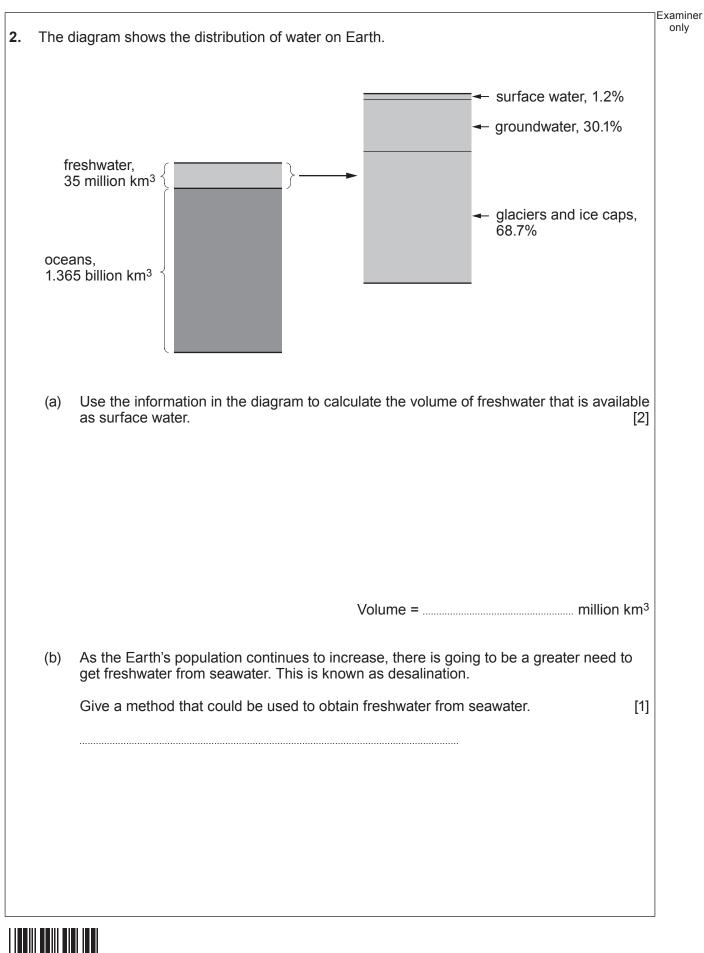
Write your answers in the spaces provided in this booklet. If you run out of space, use the additional page at the back of the booklet, taking care to number the question(s) correctly.


INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

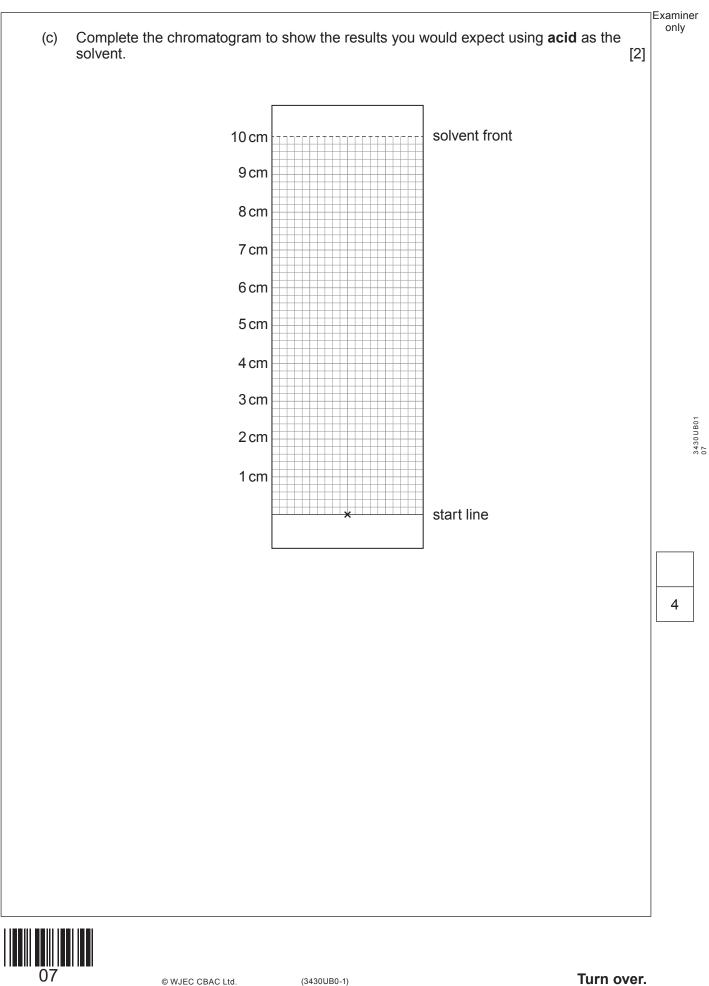
Question **4** is a quality of extended response (QER) question where your writing skills will be assessed.

The Periodic Table is printed on the back cover of this paper and the formulae for some common ions on the inside of the back cover.



		Examin only	er
(b)	Give the letter of the element found in Group 0 of the Periodic Table. Give a reason for your choice. [2]		
	Letter		
	Reason		
(c)	Explain how the electronic structure of element E can be used to determine its atomic number. [2]		
(d)	One of the diagrams represents the element oxygen. Oxygen reacts with potassium to form potassium oxide. Give the formula for potassium oxide and balance the equation for this reaction. [2]		
			3430UB01 03
	K + O ₂ → 2		1
			_
		8	

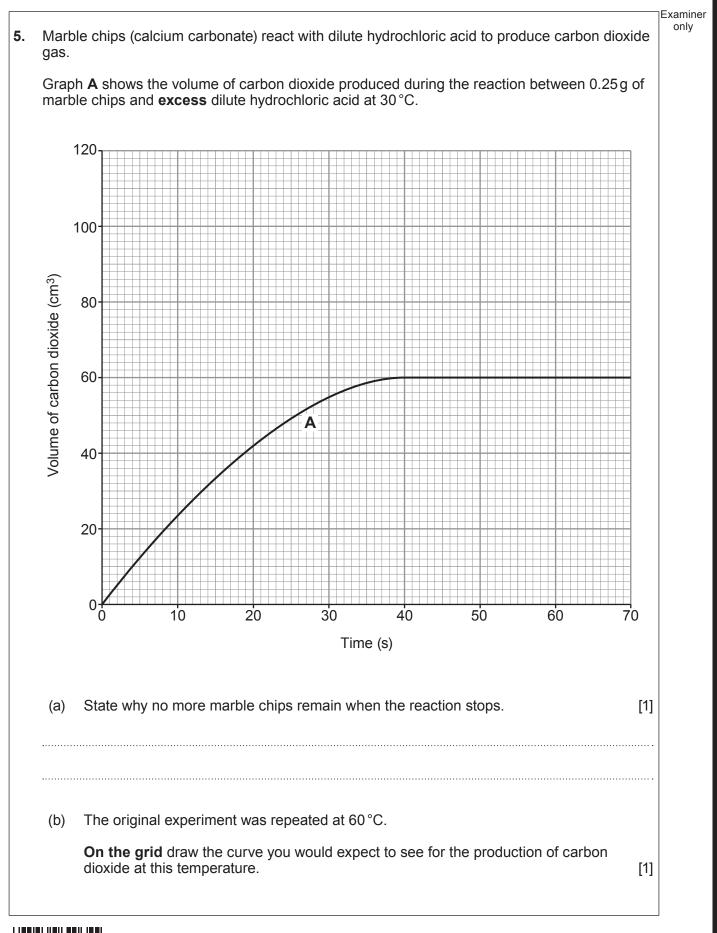
04


	(C)	Calcium ions, Ca ²⁺ , cause hardness in groundwater.		Examiner only
	(-)	Describe an experiment to compare the hardness of two groundwater samples.	[3]	
			······	
	·····			
	(d)	Washing soda is used to soften hard water. This contains sodium carbonate.		
		Give the formula of sodium carbonate.	[1]	3430UB01 05
				7
TI				

П

	R	value when the solver	nt is	
Colour	Water	Acid	Alcohol	
yellow	0.74	0.35	0.00	
green	0.76	0.81	0.46	
experiment usin	g water as the solvent	<i>?</i>		[1]
(b) Describe what y	ou would expect to see	e in the chromatogram	obtained using alcol	
the solvent.				[1]
the solvent.				[1]
the solvent.				[1]
the solvent.	·			[1]
the solvent.				[1]
the solvent.	· · · · · · · · · · · · · · · · · · ·			[1]
the solvent.	· · · · · · · · · · · · · · · · · · ·			[1]
the solvent.				[1]

The diagrams s boundary.	show two types of plate bound	daries, A and B . De	escribe what happens	s at each [6 QER]
	Α		В	


BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

3430UB01 09

The equation for the reaction between calcium carbonate and dilute hydrochloric acie as follows.	d is
$CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO_2$	
Calculate the mass of calcium chloride produced when 7.8g of calcium carbonate is reacted with excess acid.	[2]
$M_{\rm r}({\rm CaCO}_3) = 100$ $M_{\rm r}({\rm CaCl}_2) = 111$	
Mass =	g
When the reaction was repeated with a different mass of calcium carbonate, it was found that 14.3g of calcium chloride formed. This represents a yield of 53.7%.	
Calculate the maximum mass of calcium chloride that could have been formed.	[2]
Maximum mass =	g
Maximum mass = Catalysts can be added to some chemical reactions in order to increase their rate.	g
	$CaCO_3 + 2HCI \longrightarrow CaCl_2 + H_2O + CO_2$ Calculate the mass of calcium chloride produced when 7.8 g of calcium carbonate is reacted with excess acid. $M_r(CaCO_3) = 100 \qquad M_r(CaCl_2) = 111$ Mass =

Examiner only

6. Fluoride ions are added to drinking water in some areas of the UK.

The table below shows the effect of different levels of fluoride in drinking water on the number of decayed, missing and filled teeth (DMFT) and the percentage of people suffering from fluorosis.

Concentration of fluoride (mg/dm ³)	Mean DMFT	Percentage of people affected by fluorosis (%)
0.3	7.0	4
0.6	4.5	6
0.9	3.0	15
1.2	2.5	35
1.5	2.3	40
1.8	2.0	45
2.1	2.1	60
2.4	2.1	68
2.7	2.1	75

(a) The recommended concentration of fluoride ions to be added to drinking water in the UK is $1.0 \text{ mg}/\text{dm}^3$.

Use the information in the table to explain why this is the recommended level in terms of DMFT and fluorosis. [4]

DMFT

Fluorosis

			vom
(b)	Chlorine is added to all drinking water in the UK, whilst fluoride is only added in some areas.		xam onl
	Explain why some people are opposed to adding fluoride but no-one is opposed to adding chlorine to drinking water.	[2]	
(C)	Fluorine reacts with titanium at very high temperatures, forming titanium fluoride. In an experiment 3.8g of fluorine reacted with 2.4g of titanium.		
	Calculate the simplest formula for titanium fluoride. You must show your working.	[3]	
	$A_{\rm r}({\rm Ti}) = 48$ $A_{\rm r}({\rm F}) = 19$		
	Simplest formula		
			9
		L	3

7. A great deal of scientific research into global warming has happened over the last 30 years.

More recently, two new contrasting theories linked to global warming have been widely reported. These are outlined below.

Solar activity

A small number of scientists believe that changes in solar activity (changes in the brightness and warmth of the Sun) is causing global warming. Solar activity occurs on the surface of the Sun when nuclear reactions cause flares to be released, high winds to occur and a release of high energy particles from the Sun.

Global dimming

Some scientists believe that global warming is increasing the Earth's mean temperature, but that global dimming is preventing it from increasing even more. Global dimming is the reduction in the amount of radiation reaching the Earth's surface from the Sun. It is thought to be caused by an increase of aerosol particles in the Earth's atmosphere caused by pollution, dust and smog, as well as volcanic eruptions. These particles absorb solar energy and reflect sunlight back into space.

Figure 1 shows the mean atmospheric temperature, carbon dioxide concentration in the atmosphere and solar activity between 1930 and 2010.

Year	Mean atmospheric temperature (°C)	CO ₂ concentration (ppm)	Solar activity (arbitrary units)
1930	13.6	309	3.9
1940	13.6	311	4.0
1950	13.8	316	4.2
1960	13.9	320	4.2
1970	14.0	331	4.0
1980	14.2	342	3.9
1990	14.3	358	3.7
2000	14.4	370	3.7
2010	14.6	383	3.6

Figure 1

ppm = parts per million

Examiner

Figure 2 shows the mean atmospheric temperature within a 20-mile radius of the Mount Pinatubo volcano in the Philippines between 1990 and 2000. Mount Pinatubo erupted in 1991.

Figure 2

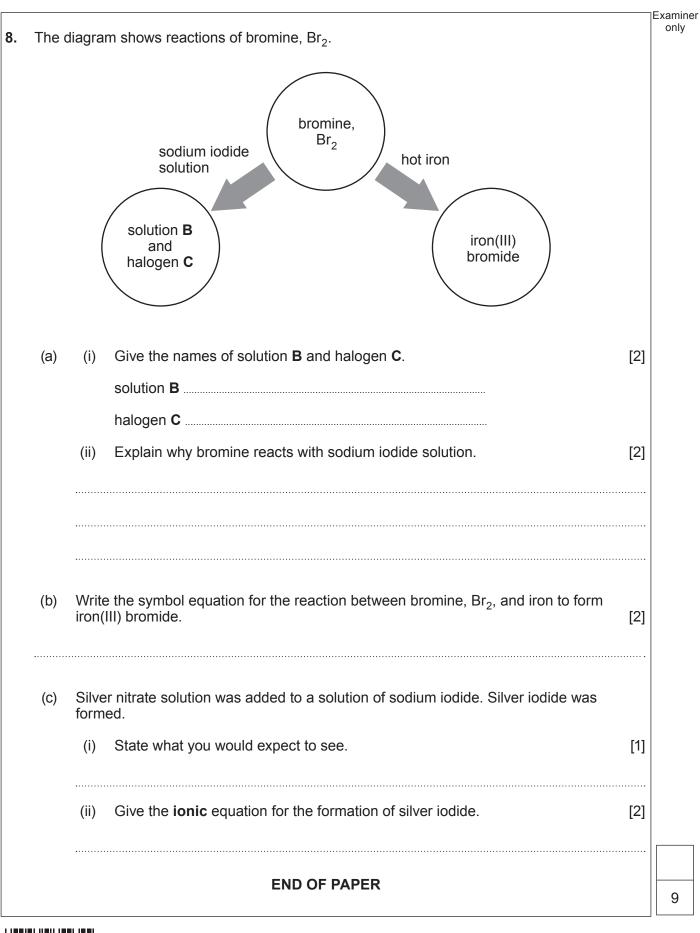
Year	Mean atmospheric temperature (°C)
1990	15.1
1991	14.7
1992	14.8
1993	14.7
1994	14.7
1995	14.6
1996	14.7
1997	14.8
1998	14.7
1999	14.8
2000	14.9

(a) Tick (*J*) the box that **best** describes the change in carbon dioxide concentration in the atmosphere between 1930 and 2010. [1]

Carbon dioxide concentration increased by approximately 10 ppm every 10 years

Carbon dioxide concentration increased more between 1970 and 2010 than it did between 1930 and 1960

Carbon dioxide concentration increased more between 1930 and 1960 than it did between 1970 and 2010


There is no trend to the change in carbon dioxide concentration between 1930 and 2010

		Ex
(b)	A newspaper report states that global warming is caused by increases in atmospheric carbon dioxide levels and by increases in solar activity.	
	Explain whether the data in Figure 1 supports this claim.	[2]
(c)	Figure 2 shows that the mean atmospheric temperature near Mount Pinatubo decreased after the volcanic eruption of 1991. Suggest why scientists would not use these findings to explain how volcanic activity affects global temperatures.	[1]
(d)	State one industrial method that is being developed to reduce the concentration of carbon dioxide in the atmosphere.	[1]
(e)	The Earth's original atmosphere contained about 95% carbon dioxide. Today, the atmosphere contains 0.04% carbon dioxide. Explain why the level of carbon dioxide decreased over geological time.	[3]
		······
(f)	When carbon dioxide turns limewater milky, calcium hydroxide is produced.	
	Give the formula of calcium hydroxide.	[1]

Question number	Additional page, if required. Write the question number(s) in the left-hand margin.	Examine only

POSITIV	EIONS	NEGATIVE IONS			
Name	Formula	Name	Formula		
aluminium	Al ³⁺	bromide	Br ⁻		
ammonium	NH4 ⁺	carbonate	CO3 ²⁻		
barium	Ba ²⁺	chloride	CI		
calcium	Ca ²⁺	fluoride	F ⁻		
copper(II)	Cu ²⁺	hydroxide	OH⁻		
hydrogen	H⁺	iodide	1-		
iron(II)	Fe ²⁺	nitrate	NO ₃ ⁻		
iron(III)	Fe ³⁺	oxide	0 ²⁻		
lithium	Li ⁺	sulfate	SO4 ²⁻		
magnesium	Mg ²⁺ Ni ²⁺				
nickel	Ni ²⁺				
potassium	K ⁺				
silver	Ag ⁺				
sodium	Na ⁺				
zinc	Zn ²⁺				

		a E		, L	. u				
	0	⁴ Helium	Neon No			1	222 Rn Radon 86		
	2		19 Fluorine 9	35.5 CI Chlorine	80 Br 35	127 lodine 53	210 At Astatine 85		
	9		16 O 8 8	32 Sulfur 16	79 Selenium 34	128 Te Tellurium	210 PO 84		
	2		14 N Nitrogen	31 Phosphorus 15	75 AS Arsenic 33	122 Sb 51	209 Bismuth 83		
	4		12 C Carbon 6	28 Si 14	73 Ge Germanium 32	119 Sn 50	207 Pb Lead 82		
	ო		11 B 5	27 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 TI Thallium 81		
щ					65 Zn 30	112 Cd Cadmium 48	201 Hg Mercury 80		
IABL					63.5 Cu Copper 29	108 Ag Silver 47	197 Au Gold 79		
					59 Nickel 28	106 Pd Palladium 46	195 Pt Platinum 78		mass
THE PERIODIC TABLE					59 Co Cobalt 27	103 Rhodium 45	192 Ir 17		 relative atomic mass atomic number
Ē	Group	en]		56 Fe Iron 26	101 Ruthenium 44	190 Osmium 76	Key	
È	9 9	Hydrogen			55 Mn Manganese 25		186 Re Rhenium 75		Ar Symbol Name Z
					52 Chromium 24	96 MO Molybdenum 42	184 W Tungsten 74		
					51 Vanadium 23	93 Niobium 41	181 Ta Tantalum 73		
					48 Ti Z2	91 Zr Zirconium 40	179 Hf Hafnium 72		1
					45 Sc 21	89 Yttrium 39	139 La Lanthanum 57	227 Actinium 89	
	2				40 Ca Calcium 20				
	~		7 Li 1 3	23 Na Sodium	$\overset{39}{\kappa}$	86 Rb Rubidium 37	133 Cs Caesium 55	223 Fr Francium 87	
			L		I	1	I	I	1

20

20

PMT